Exolar Integration
Fetch CI analytics, failure history, and test trends
Exolar Integration
Fetching CI analytics and test history from Exolar for intelligent failure diagnosis.
Overview
Exolar is a CI analytics database that stores test results from your CI/CD pipeline. The AI uses Exolar to:
- Fetch historical test results and trends
- Query failure patterns and clusters
- Analyze flake rates and test reliability
- Compare current failures against past occurrences
Important: Data flows FROM your CI pipeline TO Exolar. The AI READS from Exolar to make informed decisions - it does not report to Exolar.
Data Flow
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ CI/CD │────────▶│ EXOLAR │◀────────│ Claude │
│ Pipeline │ Pushes │ Database │ Queries│ (AI) │
│ │ Results│ │ Data │ │
└─────────────┘ └─────────────┘ └─────────────┘
Authentication
On first use, authenticate at:
https://exolar.ai-innovation.site/
Available Tools
query_exolar_data
Query test data and analytics. This is the primary tool for fetching information.
Find similar failures:
query_exolar_data({
dataset: "failures",
filters: {
error_pattern: "timeout waiting for selector",
project: "my-project"
}
})
Check flake history:
query_exolar_data({
dataset: "flaky_tests",
filters: {
test_file: "login.spec.ts",
time_range: "30d"
}
})
Get test trends:
query_exolar_data({
dataset: "test_results",
filters: {
project: "my-project",
time_range: "7d"
}
})
Find tests by classification:
query_exolar_data({
dataset: "classified_failures",
filters: {
classification: "FLAKE",
resolved: false
}
})
Common Query Patterns
| Use Case | Query |
|---|---|
| Similar errors | { dataset: "failures", filters: { error_pattern: "..." } } |
| Flaky tests | { dataset: "flaky_tests", filters: { flake_rate: ">0.1" } } |
| Recent failures | { dataset: "failures", filters: { time_range: "24h" } } |
| Test duration | { dataset: "test_metrics", filters: { metric: "duration" } } |
| Pass rate trends | { dataset: "trends", filters: { metric: "pass_rate" } } |
Failure Classifications
When analyzing failures, Exolar uses these classifications:
| Type | Description | AI Action |
|---|---|---|
BUG | Actual application bug | Create ticket, don't modify test |
FLAKE | Intermittent/timing issue | Use test-healer to fix |
ENV_ISSUE | Environment/infrastructure | Check CI config |
TEST_BUG | Issue with test code | Use test-healer to fix |
Workflow Integration
When Tests Fail
-
Fetch similar failures:
query_exolar_data({ dataset: "failures", filters: { error_pattern: "Element not found" } }) -
Check if known flake:
query_exolar_data({ dataset: "flaky_tests", filters: { test_name: "login should work" } }) -
Verify with Playwright MCP:
- Navigate to the app
- Inspect actual state
- Compare expected vs actual
-
Classify and act:
- Use triqual-plugin:failure-classifier agent
- Apply appropriate fix based on classification
Learning from History
The triqual-plugin:pattern-learner agent uses Exolar data to:
- Identify recurring failure patterns
- Propose documentation updates to Quoth
- Improve future test generation
Analytics Dashboard
View your test analytics at:
https://exolar.ai-innovation.site/dashboard
Features:
- Test pass/fail trends
- Flake rate tracking
- Failure clustering by error type
- Test duration analysis
- Historical comparison
Best Practices
- Always query before diagnosing - Check if failure is known
- Use filters effectively - Narrow down to relevant data
- Combine with Playwright MCP - Verify app state, don't assume
- Trust classifications - Past classifications inform current analysis
- Look for patterns - Recurring errors suggest systematic issues